Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Soo Yei Ho and Edward R. T. Tiekink*

Department of Chemistry, National University of Singapore, Singapore 117543

Correspondence e-mail: chmtert@nus.edu.sg

Key indicators

Single-crystal X-ray study T = 223 KMean $\sigma(C-C) = 0.008 \text{ Å}$ R factor = 0.042 wR factor = 0.115 Data-to-parameter ratio = 28.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

© 2001 International Union of Crystallography Printed in Great Britain – all rights reserved The Au atom in the title compound, $(c-C_6H_{11})_3PAu(S_2CNEt_2)$ or $[Au(C_{18}H_{33}P)(C_5H_{10}NS_2)]$, exists in a linear geometry so that Au-S is 2.3340 (11), Au-P is 2.2599 (10) Å and the angle at gold is 171.61 (4)°. The distortion from linearity may be traced to the close approach of the non-coordinating S atom which is separated from the Au atom by 3.0859 (13) Å.

Comment

In connection with previous studies on compounds of the general formula R_3 PAu(S₂COR'), R and R' = alkyl (Siasios & Tiekink, 1993*a*,*b*), which demonstrated interesting flexibility in the mode of coordination of the thiolate ligands, the structure of the title compound, $(c-C_6H_{11})_3$ PAu(S₂CNEt₂), (I), was investigated.

The Au atom in (I) exists in an approximately linear geometry defined by the S atom of the monodentate dithiocarbamate ligand and the P atom of the phosphine ligand (Fig. 1 and Table 1). There is a significant distortion from the ideal 180° angle for P-Au-S that may be correlated with the close approach of atom S2 to the Au centre. Thus, the Au···S2 separation is 3.0859(13) Å, a distance that is well within the sum of the van der Waals radii, 3.50 Å, for these atoms (Bondi, 1964). Although there are a number of related gold-phosphine-dithiocarbamate structures in the literature, there is, surprisingly, only one directly comparable mononuclear structure available for comparison, namely that of the triphenylphosphine analogue (Wijnhoven et al., 1972). The respective Au-S bond distance in the present structure and that in $(C_6H_5)_3PAu(S_2CNEt_2)$ of 2.3340 (11) and 2.338 (3) Å, respectively, are equal within experimental error. Likewise, the Au-P bond distances of 2.2599 (10) and 2.251 (3) Å, respectively, are also equivalent. However, the distortion from linearity in the cyclohexyl derivative is somewhat greater as the P-Au-S angle in the triphenylphosphine analogue was determined to be 175.7 $(1)^{\circ}$. These results show that in the uncongested Au atom environment, bulky phosphines may be accommodated without significant deviations in the geometric parameters about Au. A similar conclusion has been reported

Received 15 November 2001 Accepted 19 November 2001 Online 30 November 2001

Acta Cryst. (2001). E57, m603-m604

Figure 1

The molecular structure and crystallographic numbering scheme for (I); displacement ellipsoids are shown at the 50% probability level (Johnson, 1976).

previously for the closely related dithiocarbonate structures, *i.e.* R_3 PAu(S₂COR') (Siasios & Tiekink, 1993*a*,*b*). The crystal structure is stabilized by hydrophobic interactions.

Experimental

To a dichloromethane solution (4 ml) of $(C_6H_{11})_3$ PAuCl (0.20 g, 0.39 mmol) was added NaS₂CNEt₂ (67 mg, 0.39 mmol). The colourless solution immediately turned yellow, indicating the formation of the product, and was stirred for 2 h. The yellow solution was filtered through Celite and concentrated to approximately 1 ml to yield the product. The product was recrystallized by the vapour diffusion of hexane into a dichloromethane solution to yield X-ray quality yellow crystals of (I). ¹H NMR (CDCl₃): δ 3.91 (*q*, 4 H), 2.02–1.54 (*m*, 33 H), 1.30 (*t*, 6 H). ¹³C{¹H} NMR (CDCl₃): δ 216.3 (*s*, CS₂), 48.9 (*s*, ethyl-CH₂), 33.5–25.9 (*m*, P(C₆H₁₁)₃), 12.1 (*s*, CH₃). ³¹P{¹H} (CDCl₃): δ 55.3 p.p.m. ESI–MS: *m*/z 626 (*M*⁺). IR (KBr): 1476 ν (C–N), 1083 and 991 ν (C–S) cm⁻¹.

Crystal data

[Au(C ₅ H ₁₀ NS ₂)(C ₁₈ H ₃₃ P)]
$M_r = 625.64$
Triclinic, P1
a = 10.1697 (5) Å
b = 11.7231 (6) Å
c = 12.3281 (6) Å
$\alpha = 71.710 \ (1)^{\circ}$
$\beta = 77.917 (1)^{\circ}$
$\gamma = 65.803 (1)^{\circ}$
$V = 1267.36 (11) \text{ Å}^3$
. ,

Data collection

Bruker AXS SMART CCD
diffractometer
ω scans
Absorption correction: empirical
(SADABS; Bruker, 2000)
$T_{\min} = 0.112, \ T_{\max} = 0.297$
10496 measured reflections

Z = 2 $D_x = 1.639 \text{ Mg m}^{-3}$ Mo K\alpha radiation Cell parameters from 10496 reflections $\theta = 1.8 - 30.0^{\circ}$ $\mu = 6.04 \text{ mm}^{-1}$ T = 223 (2) KBlock, pale yellow $0.39 \times 0.31 \times 0.21 \text{ mm}$

	7203 independent reflections
	6682 reflections with $I > 2\sigma(I)$
	$R_{\rm int} = 0.036$
1	$\theta_{\rm max} = 30.0^{\circ}$
	$h = -10 \rightarrow 14$
	$k = -10 \rightarrow 16$
	$l = -17 \rightarrow 17$

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0897P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.042$	where $P = (F_o^2 + 2F_c^2)/3$
$vR(F^2) = 0.115$	$(\Delta/\sigma)_{\rm max} = 0.001$
S = 1.05	$\Delta \rho_{\rm max} = 2.08 \text{ e } \text{\AA}^{-3}$
7203 reflections	$\Delta \rho_{\rm min} = -2.91 \text{ e } \text{\AA}^{-3}$
254 parameters	
Hatom parameters constrained	

Table 1

Selected geometric parameters (Å, °).

Au-P1	2.2599 (10)	P1-C12	1.858 (5)
Au-S1	2.3340 (11)	P1-C18	1.874 (4)
S1-C1	1.745 (4)	N1-C1	1.348 (5)
S2-C1	1.699 (4)	N1-C4	1.464 (6)
P1-C6	1.836 (4)	N1-C2	1.464 (6)
P1-Au-S1	171.61 (4)	C18–P1–Au	112.27 (15)
C1-S1-Au	98.38 (14)	C1-N1-C4	121.5 (4)
C6-P1-C12	105.79 (19)	C1-N1-C2	121.2 (4)
C6-P1-C18	106.16 (19)	C4-N1-C2	116.8 (4)
C12-P1-C18	112.0 (2)	N1-C1-S2	122.2 (3)
C6-P1-Au	112.06 (13)	N1-C1-S1	117.4 (3)
C12-P1-Au	108.40 (14)	S2-C1-S1	120.5 (2)

The C-bound H atoms were placed in their geometrically calculated positions and included in the final refinement in the ridingmodel approximation with an overall displacement parameter, $U_{\rm iso}$, with $1.0U_{\rm iso}$ for methine-H, $1.25U_{\rm iso}$ for methylene-H and $1.5U_{\rm iso}$ for CH₃. The residual electron-density peak is located in the vicinity of the Au atom.

Data collection: *SMART* (Bruker, 2000); cell refinement: *SAINT* (Bruker, 2000); data reduction: *SHELXTL* (Bruker, 2000); program(s) used to solve structure: *DIRDIF92 PATTY* (Beurskens *et al.*, 1992); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP*II (Johnson, 1976); software used to prepare material for publication: *SHELXTL*.

The National University of Singapore is thanked for the award of a research grant (R-143–000–139–112).

References

Beurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., Garcia-Granda, S., Gould, R. O., Smits, J. M. M. & Smykalla, C. (1992). The *DIRDIF* Program System. Technical Report. Crystallography Laboratory, University of Nijmegen, The Netherlands.

Bondi, A. (1964). J. Phys. Chem. 68, 441-451.

Bruker (2000). *SMART, SAINT* and *SHELXTL* (Versions 5.6), and *SADABS* (Version 2.01). Bruker AXS Inc., Madison, Wisconsin, USA.

Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

Siasios, G. & Tiekink, E. R. T. (1993a). Z. Kristallogr. 204, 95-105.

Siasios, G. & Tiekink, E. R. T. (1993b). Z. Kristallogr. 205, 261–270.

Wijnhoven, J. G., Bosman, W. P. J. H. & Beurskens, P. T. (1972). J. Cryst. Mol. Struct. 2, 7–15.