Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368

Soo Yei Ho and Edward R. T. Tiekink*

Department of Chemistry, National University of
Singapore, Singapore 117543
Correspondence e-mail: chmtert@nus.edu.sg

Key indicators

Single-crystal X-ray study
$T=223 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.008 \AA$
R factor $=0.042$
$w R$ factor $=0.115$
Data-to-parameter ratio $=28.4$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2001 International Union of Crystallography Printed in Great Britain - all rights reserved

(N,N-Diethyldithiocarbamato)(tricyclohexylphosphine)gold(I)

The Au atom in the title compound, $\left(c-\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3} \mathrm{PAu}\left(\mathrm{S}_{2} \mathrm{CNEt}_{2}\right)$ or $\left[\mathrm{Au}\left(\mathrm{C}_{18} \mathrm{H}_{33} \mathrm{P}\right)\left(\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{NS}_{2}\right)\right]$, exists in a linear geometry so that $\mathrm{Au}-\mathrm{S}$ is 2.3340 (11), $\mathrm{Au}-\mathrm{P}$ is 2.2599 (10) \AA and the angle at gold is 171.61 (4) ${ }^{\circ}$. The distortion from linearity may be traced to the close approach of the non-coordinating S atom which is separated from the Au atom by 3.0859 (13) \AA.

Comment

In connection with previous studies on compounds of the general formula $R_{3} \mathrm{PAu}\left(\mathrm{S}_{2} \mathrm{CO} R^{\prime}\right), R$ and $R^{\prime}=\operatorname{alkyl}$ (Siasios \& Tiekink, 1993a,b), which demonstrated interesting flexibility in the mode of coordination of the thiolate ligands, the structure of the title compound, $\left(c-\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3} \mathrm{PAu}\left(\mathrm{S}_{2} \mathrm{CNEt}_{2}\right)$, (I), was investigated.

(I)

The Au atom in (I) exists in an approximately linear geometry defined by the S atom of the monodentate dithiocarbamate ligand and the P atom of the phosphine ligand (Fig. 1 and Table 1). There is a significant distortion from the ideal 180° angle for $\mathrm{P}-\mathrm{Au}-\mathrm{S}$ that may be correlated with the close approach of atom S 2 to the Au centre. Thus, the $\mathrm{Au} \cdots \mathrm{S} 2$ separation is 3.0859 (13) \AA, a distance that is well within the sum of the van der Waals radii, $3.50 \AA$, for these atoms (Bondi, 1964). Although there are a number of related gold-phos-phine-dithiocarbamate structures in the literature, there is, surprisingly, only one directly comparable mononuclear structure available for comparison, namely that of the triphenylphosphine analogue (Wijnhoven et al., 1972). The respective $\mathrm{Au}-\mathrm{S}$ bond distance in the present structure and that in $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{PAu}\left(\mathrm{S}_{2} \mathrm{CNEt}_{2}\right)$ of 2.3340 (11) and 2.338 (3) \AA, respectively, are equal within experimental error. Likewise, the $\mathrm{Au}-\mathrm{P}$ bond distances of 2.2599 (10) and 2.251 (3) \AA, respectively, are also equivalent. However, the distortion from linearity in the cyclohexyl derivative is somewhat greater as the $\mathrm{P}-\mathrm{Au}-\mathrm{S}$ angle in the triphenylphosphine analogue was determined to be 175.7 (1) ${ }^{\circ}$. These results show that in the uncongested Au atom environment, bulky phosphines may be accommodated without significant deviations in the geometric parameters about Au . A similar conclusion has been reported

Received 15 November 2001 Accepted 19 November 2001 Online 30 November 2001

The molecular structure and crystallographic numbering scheme for (I); displacement ellipsoids are shown at the 50% probability level (Johnson, 1976).
previously for the closely related dithiocarbonate structures, i.e. $R_{3} \mathrm{PAu}\left(\mathrm{S}_{2} \mathrm{COR}{ }^{\prime}\right)$ (Siasios \& Tiekink, 1993a,b). The crystal structure is stabilized by hydrophobic interactions.

Experimental

To a dichloromethane solution $(4 \mathrm{ml})$ of $\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3} \mathrm{PAuCl}(0.20 \mathrm{~g}$, 0.39 mmol) was added $\mathrm{NaS}_{2} \mathrm{CNEt}_{2}(67 \mathrm{mg}, 0.39 \mathrm{mmol}$). The colourless solution immediately turned yellow, indicating the formation of the product, and was stirred for 2 h . The yellow solution was filtered through Celite and concentrated to approximately 1 ml to yield the product. The product was recrystallized by the vapour diffusion of hexane into a dichloromethane solution to yield X-ray quality yellow crystals of (I). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): ~ \delta 3.91(q, 4 \mathrm{H}), 2.02-1.54(m, 33 \mathrm{H})$, $1.30(t, 6 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 216.3\left(s, \mathrm{CS}_{2}\right), 48.9(s$, ethyl$\left.\mathrm{CH}_{2}\right), 33.5-25.9\left(m, \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right), 12.1\left(s, \mathrm{CH}_{3}\right) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}\left(\mathrm{CDCl}_{3}\right): \delta 55.3$ p.p.m. ESI-MS: $m / z 626\left(M^{+}\right)$. IR (KBr): $1476 v(\mathrm{C}-\mathrm{N}), 1083$ and 991 $\nu(\mathrm{C}-\mathrm{S}) \mathrm{cm}^{-1}$.

Crystal data

$\left[\mathrm{Au}\left(\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{NS}_{2}\right)\left(\mathrm{C}_{18} \mathrm{H}_{33} \mathrm{P}\right)\right]$
$M_{r}=625.64$
Triclinic, $P \overline{1}$
$a=10.1697(5) \AA$
$b=11.7231(6) \AA$
$c=12.3281(6) \AA$
$\alpha=71.710(1)^{\circ}$
$\beta=77.917(1)^{\circ}$
$\gamma=65.803(1)^{\circ}$
$V=1267.36(11) \AA^{\circ}$

Data collection

Bruker AXS SMART CCD
diffractometer
ω scans
Absorption correction: empirical
(SADABS; Bruker, 2000)
$T_{\text {min }}=0.112, T_{\text {max }}=0.297$
10496 measured reflections

$$
\begin{aligned}
& Z=2 \\
& D_{x}=1.639 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 10496 \\
& \quad \text { reflections } \\
& \theta=1.8-30.0^{\circ} \\
& \mu=6.04 \mathrm{~mm}^{-1} \\
& T=223(2) \mathrm{K} \\
& \text { Block, pale yellow } \\
& 0.39 \times 0.31 \times 0.21 \mathrm{~mm}
\end{aligned}
$$

7203 independent reflections
6682 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.036$
$\theta_{\text {max }}=30.0^{\circ}$
$h=-10 \rightarrow 14$
$k=-10 \rightarrow 16$
$l=-17 \rightarrow 17$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.042$
$w R\left(F^{2}\right)=0.115$
$S=1.05$
7203 reflections
254 parameters
H -atom parameters constrained
Table 1
Selected geometric parameters $\left(\AA,^{\circ}\right)$

$\mathrm{Au}-\mathrm{P} 1$	$2.2599(10)$	$\mathrm{P} 1-\mathrm{C} 12$	$1.858(5)$
$\mathrm{Au}-\mathrm{S} 1$	$2.3340(11)$	$\mathrm{P} 1-\mathrm{C} 18$	$1.874(4)$
$\mathrm{S} 1-\mathrm{C} 1$	$1.745(4)$	$\mathrm{N} 1-\mathrm{C} 1$	$1.348(5)$
$\mathrm{S} 2-\mathrm{C} 1$	$1.699(4)$	$\mathrm{N} 1-\mathrm{C} 4$	$1.464(6)$
$\mathrm{P} 1-\mathrm{C} 6$	$1.836(4)$	$\mathrm{N} 1-\mathrm{C} 2$	$1.464(6)$
$\mathrm{P} 1-\mathrm{Au}-\mathrm{S} 1$	$171.61(4)$	$\mathrm{C} 18-\mathrm{P} 1-\mathrm{Au}$	$112.27(15)$
$\mathrm{C} 1-\mathrm{S} 1-\mathrm{Au}$	$98.38(14)$	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 4$	$121.5(4)$
$\mathrm{C} 6-\mathrm{P} 1-\mathrm{C} 12$	$105.79(19)$	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 2$	$121.2(4)$
$\mathrm{C} 6-\mathrm{P} 1-\mathrm{C} 18$	$106.16(19)$	$\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 2$	$116.8(4)$
$\mathrm{C} 12-\mathrm{P} 1-\mathrm{C} 18$	$112.0(2)$	$\mathrm{N} 1-\mathrm{C} 1-\mathrm{S} 2$	$122.2(3)$
$\mathrm{C} 6-\mathrm{P} 1-\mathrm{Au}$	$112.06(13)$	$\mathrm{N} 1-\mathrm{C} 1-\mathrm{S} 1$	$117.4(3)$
$\mathrm{C} 12-\mathrm{P} 1-\mathrm{Au}$	$108.40(14)$	$\mathrm{S} 2-\mathrm{C} 1-\mathrm{S} 1$	$120.5(2)$

The C-bound H atoms were placed in their geometrically calculated positions and included in the final refinement in the ridingmodel approximation with an overall displacement parameter, $U_{\text {iso }}$, with $1.0 U_{\text {iso }}$ for methine- $\mathrm{H}, 1.25 U_{\text {iso }}$ for methylene-H and $1.5 U_{\text {iso }}$ for CH_{3}. The residual electron-density peak is located in the vicinity of the Au atom.

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SHELXTL (Bruker, 2000); program(s) used to solve structure: DIRDIF92 PATTY (Beurskens et al., 1992); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXTL.

The National University of Singapore is thanked for the award of a research grant (R-143-000-139-112).

References

Beurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., Garcia-Granda, S., Gould, R. O., Smits, J. M. M. \& Smykalla, C. (1992). The DIRDIF Program System. Technical Report. Crystallography Laboratory, University of Nijmegen, The Netherlands.
Bondi, A. (1964). J. Phys. Chem. 68, 441-451.
Bruker (2000). SMART, SAINT and SHELXTL (Versions 5.6), and SADABS (Version 2.01). Bruker AXS Inc., Madison, Wisconsin, USA.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Siasios, G. \& Tiekink, E. R. T. (1993a). Z. Kristallogr. 204, 95-105. Siasios, G. \& Tiekink, E. R. T. (1993b). Z. Kristallogr. 205, 261-270.
Wijnhoven, J. G., Bosman, W. P. J. H. \& Beurskens, P. T. (1972). J. Cryst. Mol. Struct. 2, 7-15.

